Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Research and Development of a New Direct Injection Gasoline Engine

2000-03-06
2000-01-0530
A new stratified charge combustion system has been developed for direct injection gasoline engines. The special feature of this system is employment of a thin fan-shaped fuel spray formed by a slit nozzle. The stratified mixture is produced by the combination of this fan-spray and a shell-shaped piston cavity. Both under-mixing and over-mixing of fuel in the stratified mixture is reduced by this system. This combustion system does not require distinct charge motion such as tumble or swirl, which enables intake port geometry to be simplified to improve full load performance. The effects of the new system on engine performance at part load are improved fuel consumption and reduced smoke, CO and HC emissions, obviously at medium load and medium engine speed. HC emissions at light load are also improved even with high EGR conditions.
Technical Paper

Reduction of Diesel Particulate Matter by Oil Consumption Improvement Utilizing Radioisotope Tracer Techniques

1997-05-01
971630
A study was conducted to reduce unburned oil fractions in diesel particulate matter (PM) by improving oil consumption. A method utilizing radioisotope 14C was developed to measure the unburned oil fractions separately for the four paths by which oil is consumed: valve stem seals, piston rings, PCV system, turbocharger. The conversion ratio of oil consumption to PM was calculated by comparing the unburned oil emission rates with oil consumption rates, which were obtained by the use of the 35S tracer method. The result in an experimental diesel engine shows the highest conversion ratio for the oil leaking through the valve stem seals. The modifications to the engine were thereby focused on reducing the leakage of the stem seals. This stem seal modification, along with piston ring improvements, reduced oil consumption, resulting in the unburned oil fractions in PM being effectively reduced.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
Technical Paper

Plate Type Methanol Steam Reformer Using New Catalytic Combustion for a Fuel Cell

2002-03-04
2002-01-0406
Methanol steam reforming, which is an endothermic reaction, needs some heating. Both methanol conversion ratio and carbon monoxide (CO) concentration increase when temperature is elevated. As CO poisons a typical polymer electrolyte of a fuel cell, the relationship between methanol conversion ratio and CO concentration is a trade-off one. It was found from preliminary researches that the reforming reaction speed is controlled by heat transfer rate at large methanol flow rate, where methanol conversion ratio becomes lower and CO concentration becomes higher. Therefore it is necessary to develop a new methanol reforming concept that provides stable combustion for heating and enhanced heat transfer for improving the trade-off relationship and making a compact reformer. Reforming catalyst using metal honeycomb support and a new catalytic combustion were applied to a new concept plate type methanol steam reformer, which is used in a fuel cell of 3 kW-class electric generation.
Technical Paper

Piston Temperature Measuring Technology Using Electromagnetic Induction

2001-05-07
2001-01-2027
Authors have developed an apparatus which measures the piston temperature using electromagnetic induction. The characteristics of this apparatus are as follows; 1 Applicable to 6 points per cylinder and all cylinders 2 Capable of measuring while the engine is running from start to 6000r/min full-load operation 3 Wide measuring range; from -30 to 400 °C 4 High accuracy; ±2.5 °C 5 Quick and easy setup 6 High durability This technology contributes to realizing the best balance of piston reliability and matching of combustion conditions. In this report, authors analyzed its influences upon piston temperature when the ignition timing,the oil/water temperature or the oil flow from piston jet were changed, respectively.
Technical Paper

Numerical Study of Mixture Formation and Combustion Processes in a Direct Injection Gasoline Engine with Fan-Shaped Spray

2001-03-05
2001-01-0738
Numerical 3-D simulations are performed for the improvement of the new direct injection gasoline engine. A solution based local grid refinement method has been developed in order to reduce the CPU time. This method has been incorporated into the CFD program (STAR-CD) with in-house spray and combustion models. Calculation results were compared with the experimental data taken by the LIF technique, and good agreement was obtained for the mixture formation and combustion processes. Some calculations were carried out for the fuel-air mixture formation process during late injection stratified combustion and the following results were obtained. The unburnt fuel has a tendency to remain in the side of the piston cavity at the latter part of the combustion period. To reduce the amount of unburnt fuel, it was shown that the combination of a thin thickness fan spray and compact cavity forms a spherical mixture, suitable for combustion.
Technical Paper

Numerical Simulation Accounting for the Finite-Rate Elementary Chemical Reactions for Computing Diesel Combustion Process

2005-09-11
2005-24-051
To facilitate research and development of diesel engines, the universal numerical code for predicting diesel combustion has been favored for the past decade. In this paper, the finite-rate elementary chemical reactions, sometimes called the detailed chemical reactions, are introduced into the KIVA-3V code through the use of the Partially Stirred Reactor (PaSR) model with the KH-RT break-up, modified collision and velocity interpolation models. Outcomes were such that the predicted pressure histories have favorable agreements with the measurements of single and double injection cases in the diesel engine for use in passenger cars. Thus, it is demonstrated that the present model will be a useful tool for predicting ignition and combustion characteristics encountered in the cylinder.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Technical Paper

Numerical Analysis of Ignition Control in HCCI Engine

2003-05-19
2003-01-1817
The UNIBUS (Uniform Bulky Combustion System) based on the HCCI (Homogeneous Charge Compression Ignition) concept uses an early injection quantity, timing, boost pressure, EGR, etc. for ignition control [1]. To further expand the operation range from the present level, the effects of the atmospheric conditions on ignition and combustion were calculated using CHEMKIN in the present study. When controlling the start timing of the high temperature reaction to suppress the early ignition, it is more effective to apply EGR than boost pressure. If fuel quantity is increased to expand load, it is possible to suppress a sharp cylinder pressure rising rate by increasing the boost pressure. Furthermore, it has become apparent that the cause of this is an increase in heat capacity.
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

New Light Weight 3 Liter V6 Toyota Engine with High Output Torque, Good Fuel Economy and Low Exhaust Emission Levels

1995-02-01
950805
A new generation 3.0 liter V6 engine, the 1MZ-FE, has been developed. Through improvement of the basic technical characteristics of each individual component, the 1MZ-FE has achieved compactness, weight reduction and good fuel economy without adding systems or components. This new engine makes use of an aluminum cylinder block, and compared with the previous V6 engine, significant weight reduction of the crankshaft, connecting rods and pistons was achieved while still maintaining a high level of rigidity. To improve fuel economy, friction loss was reduced substantially by reducing the weight of moving parts and improving the surface roughness of sliding parts. The combustion was also improved through better fuel atomization by the air-assisted fuel injector and modification of the combustion chamber shape. Through these improvements the 1MZ-FE has achieved a weight reduction of approximately 20% and far greater vehicle fuel economy than before.
Technical Paper

New Four Valves Per Cylinder Basic Engine for Passenger Car

1987-11-08
871177
Through the experience in developing several 4-valve sporty engines, we have had an idea that 4-valve technology regarded as one of sporty engines may be applied to a standard engine of a passenger car. Making use of the superior characteristics of 4-valve technology, combustion chamber design and valve train system were completely refined for a standard engine. Higher torque in low to middle speed range and good fuel economy, important features in practical use, were pursued as the prior target of development. As a passenger car engine, comfortable sound in passenger compartment is an important feature as well as high performance and good fuel economy. With these concepts, we have developed the 3S-FE, 2-liter, 4-valve engine which has achieved 5.1& torque, 18.6% horse power and 9.7% Fuel consumption (highway mode) gains compared with the original 2S-E, 2-liter, 2-valve engine.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Technical Paper

NOx Reduction is Compatible with Fuel Economy Through Toyota’s Lean Combustion System

1985-06-01
851210
T-LCS (TOYOTA LEAN COMBUSTION SYSTEM ) has made the engine possible to be operated with very lean mixture over 22 of air-fuel ratio, and achieved the NOx reduction and the improvement of fuel economy. This system has two features, one of which is the feed-back control of lean mixture strength using the LEAN MIXTURE SENSOR that has been newly developed. The other feature is the improved combustion through the SWIRL CONTROL VALVE and individual timing control of fuel injection for each cylinder. The influence of the test patterns, the vehicle weight and the air-fuel ratio on the exhaust emissions of lean combustion system has been examined and the results are reported in this paper.
Technical Paper

Modeling of Diesel Engine Components for Model-Based Control (First Report): The construction and validation of a model of the Air Intake System

2011-08-30
2011-01-2066
Model based control design is an important method for optimizing engine operating conditions so as to simultaneously improve engines' thermal efficiency and emission profiles. Modeling of intake system that includes an intake throttle valve, an EGR valve and a variable geometry turbocharger was constructed based on conservation laws combined with maps. Calculated results were examined the predictive accuracy of fresh charge mass flow, EGR rate and boost pressure.
Technical Paper

Mixture Preparation and HC Emissions of a 4-Valve Engine with Port Fuel Injection During Cold Starting and Warm-up

1995-02-01
950074
In order to reduce tail-pipe hydrocarbon emissions from SI gasoline engines, rapid catalyst warm-up and improvement of catalyst conversion efficiency are important. There are many reports which have been published by manufacturers and research institutes on this issue. For further reduction of tail-pipe hydrocarbon emissions, it is necessary to reduce engine-out hydrocarbon emissions and to improve after treatment, during the time the catalyst is not activated. This paper quantitatively analyzed the fuel amount of intake port and cylinder wall-wetting, burned fuel and engine-out hydrocarbon emissions, cycle by cycle in firing condition, utilizing a specially designed analytical engine. The effect of mixture preparation and fuel properties for engine-out hydrocarbon emissions, during the cold engine start and warm-up period, were quantitatively clarified.
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Technical Paper

MMC All Aluminum Cylinder Block for High Power SI Engines

2000-03-06
2000-01-1231
An all aluminum cylinder block with a Metal Matrix Composite (MMC) cylinder bore was developed which made it possible to re-design the base engine for high performance with a bore-to-bore distance as narrow as 5.5mm. The cylinder block is an open deck type and the MMC preform consists of alumina-silica fibers and mulite particles. A laminar flow die cast process was selected to ensure defect-free MMC bore quality. To insure good lubrication, electrochemical machining was applied to the bore surface. By use of radioisotope(RI) measurements, MMC reinforcement was optimized for wear characteristics. Particular attention was paid to use of fuels with high sulfur levels.
Technical Paper

Key Factors of Fuel Injection System to Draw Out Good Response in 4-Valve Engine

1987-02-01
870126
Fuel and air behavior in the induction passage of a 4-valve engine were investigated in order to improve response at low and medium engine speeds. It was found that response is affected not only by wall vetting but also by fuel being pushed back into the intake manifold and by a lack of fuel which occurs during the transient. Futhermore, fuel-air mixing was found to be insufficient at certain injection timings, resulting in poor combustion and a consequent increase in exhaust emission and fuel consumption. This paper describes the factors of the fuel injection system which are critical for optimum response. Recommendations are made for injector location and injection timing and a proposal is put forward for a system of compensatory fuel injection to improve combustion efficiency during acceleration.
X